Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Type of study
Language
Year range
1.
J. appl. sci. environ. manag ; 23(1): 14-19, 2019. ilus
Article in English | AIM | ID: biblio-1263361

ABSTRACT

ABSTRACT: The dominant bacteriological and archaeal phyla of compounded soils sourced from a commercial farm estate located in Amukpe town and a nearby control in Adavware community both in Delta State, were evaluated with the aid of Next Generation Sequencing (NGS) protocols. The residual herbicide and pesticide composition of the bulked soils were also determined using gas chromatography (GC) and electron capture detector (ECD). Total concentrations of the extracted DNA were 6.83 and 6.65 ng/µl for the control and experimental soils. Nine (9) bacterial phyla; Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes, Verrucomicrobia, Planctomycetes, Bacteroidetes Acidobacteria, and Elusimicrobia were observed in the control soil. Thirteen (13) bacterial phyla; Elusimicrobia, Fibrobacteres Lentisphaerae, Armatimonadetes, Cyanobacteria/Chloroplast, Bacteroidetes, Actinobacteria, Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, Planctomycetes and Verrucomicrobia were detected in the experimental soil. Two (2) archaeal phyla; Euryarchaeota, and Diapherotrites were detected both the experimental and control soil, whilst an additional archaeal phylum; Woesearchaeota was present in only the experimental soil. The total organochloride phosphate component of the experimental soil was 1.4µg/Kg and 0.4µg/Kg for the control soil respectively


Subject(s)
Acidobacteria , Actinobacteria , Bacteroidetes , Chloroflexi , Firmicutes , Nigeria , Verrucomicrobia
2.
Biol. Res ; 47: 1-6, 2014. graf, tab
Article in English | LILACS | ID: biblio-950763

ABSTRACT

BACKGROUND: Marine invertebrate-associated microbial communities are interesting examples of complex symbiotic systems and are a potential source of biotechnological products. RESULTS: In this work, pyrosequencing-based assessment from bacterial community structures of sediments, two sponges, and one zoanthid collected in the Mexican Caribbean was performed. The results suggest that the bacterial diversity at the species level is higher in the sediments than in the animal samples. Analysis of bacterial communities' structure showed that about two thirds of the bacterial diversity in all the samples belongs to the phyla Acidobacteria and Proteobacteria. The genus Acidobacteriumappears to dominate the bacterial community in all the samples, reaching almost 80% in the sponge Hyrtios. CONCLUSIONS: Our evidence suggests that the sympatric location of these benthonic species may lead to common bacterial structure features among their bacterial communities. The results may serve as a first insight to formulate hypotheses that lead to more extensive studies of sessile marine organisms' microbiomes from the Mexican Caribbean.


Subject(s)
Animals , Porifera/microbiology , Anthozoa/microbiology , Acidobacteria/physiology , Sympatry , Microbiota/physiology , Phylogeny , Porifera/classification , Symbiosis/physiology , RNA, Ribosomal, 16S/analysis , Caribbean Region , Geologic Sediments/microbiology , Proteobacteria/classification , Proteobacteria/physiology , Anthozoa/classification , Biodiversity , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL